Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 264
Filtrar
1.
Plant J ; 118(3): 607-625, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38361340

RESUMO

The conservation of GOLVEN (GLV)/ROOT MERISTEM GROWTH FACTOR (RGF) peptide encoding genes across plant genomes capable of forming roots or root-like structures underscores their potential significance in the terrestrial adaptation of plants. This study investigates the function and role of GOLVEN peptide-coding genes in Medicago truncatula. Five out of fifteen GLV/RGF genes were notably upregulated during nodule organogenesis and were differentially responsive to nitrogen deficiency and auxin treatment. Specifically, the expression of MtGLV9 and MtGLV10 at nodule initiation sites was contingent upon the NODULE INCEPTION transcription factor. Overexpression of these five nodule-induced GLV genes in hairy roots of M. truncatula and application of their synthetic peptide analogues led to a decrease in nodule count by 25-50%. Uniquely, the GOLVEN10 peptide altered the positioning of the first formed lateral root and nodule on the primary root axis, an observation we term 'noduletaxis'; this decreased the length of the lateral organ formation zone on roots. Histological section of roots treated with synthetic GOLVEN10 peptide revealed an increased cell number within the root cortical cell layers without a corresponding increase in cell length, leading to an elongation of the root likely introducing a spatiotemporal delay in organ formation. At the transcription level, the GOLVEN10 peptide suppressed expression of microtubule-related genes and exerted its effects by changing expression of a large subset of Auxin responsive genes. These findings advance our understanding of the molecular mechanisms by which GOLVEN peptides modulate root morphology, nodule ontogeny, and interactions with key transcriptional pathways.


Assuntos
Regulação da Expressão Gênica de Plantas , Medicago truncatula , Proteínas de Plantas , Raízes de Plantas , Nódulos Radiculares de Plantas , Medicago truncatula/genética , Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/metabolismo , Medicago truncatula/efeitos dos fármacos , Medicago truncatula/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/efeitos dos fármacos , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Nodulação/genética , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/efeitos dos fármacos , Peptídeos/metabolismo , Peptídeos/genética
2.
Proc Natl Acad Sci U S A ; 119(10): e2116549119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35235457

RESUMO

Legumes attract symbiotic bacteria and create de novo root organs called nodules. Nodule development consists of bacterial infection of root epidermis and subsequent primordium formation in root cortex, steps that need to be spatiotemporally coordinated. The Lotus japonicus mutant "daphne " has uncoupled symbiotic events in epidermis and cortex, in that it promotes excessive bacterial infection in epidermis but does not produce nodule primordia in cortex. Therefore, daphne should be useful for exploring unknown signals that coordinate these events across tissues. Here, we conducted time-course RNA sequencing using daphne after rhizobial infection. We noticed that IAA carboxyl methyltransferase 1 (IAMT1) , which encodes the enzyme that converts auxin (IAA) into its methyl ester (MeIAA), is transiently induced in wild-type roots at early stages of infection but shows different expression dynamics in daphne. IAMT1 serves an important function in shoot development of Arabidopsis, a nonsymbiotic plant, but the function of IAMT1 in roots has not been reported. Phylogenetic tree analysis suggests a gene duplication of IAMT1 in the legume lineage, and we found that one of the two IAMT1s (named IAMT1a) was induced in roots by epidermal infection. IAMT1a knockdown inhibited nodule development in cortex; however, it had no effect on epidermal infection. The amount of root MeIAA increased with rhizobial infection. Application of MeIAA, but not IAA , significantly induced expression of the symbiotic gene NIN in the absence of rhizobial infection. Our results provide evidence for the role of auxin methylation in an early stage of root nodule development.


Assuntos
Duplicação Gênica , Ácidos Indolacéticos/metabolismo , Lotus/metabolismo , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Genes de Plantas , Lotus/genética , Lotus/crescimento & desenvolvimento , Metilação , Mutação , Filogenia , Transcriptoma
3.
Plant Physiol ; 188(1): 477-489, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34633461

RESUMO

Nodule Inception (NIN) is one of the most important root nodule symbiotic genes as it is required for both infection and nodule organogenesis in legumes. Unlike most legumes with a sole NIN gene, there are four putative orthologous NIN genes in soybean (Glycine max). Whether and how these NIN genes contribute to soybean-rhizobia symbiotic interaction remain unknown. In this study, we found that all four GmNIN genes are induced by rhizobia and that conserved CE and CYC binding motifs in their promoter regions are required for their expression in the nodule formation process. By generation of multiplex Gmnin mutants, we found that the Gmnin1a nin2a nin2b triple mutant and Gmnin1a nin1b nin2a nin2b quadruple mutant displayed similar defects in rhizobia infection and root nodule formation, Gmnin2a nin2b produced fewer nodules but displayed a hyper infection phenotype compared to wild type (WT), while the Gmnin1a nin1b double mutant nodulated similar to WT. Overexpression of GmNIN1a, GmNIN1b, GmNIN2a, and GmNIN2b reduced nodule numbers after rhizobia inoculation, with GmNIN1b overexpression having the weakest effect. In addition, overexpression of GmNIN1a, GmNIN2a, or GmNIN2b, but not GmNIN1b, produced malformed pseudo-nodule-like structures without rhizobia inoculation. In conclusion, GmNIN1a, GmNIN2a, and GmNIN2b play functionally redundant yet complicated roles in soybean nodulation. GmNIN1b, although expressed at a comparable level with the other homologs, plays a minor role in root nodule symbiosis. Our work provides insight into the understanding of the asymmetrically redundant function of GmNIN genes in soybean.


Assuntos
Glycine max/crescimento & desenvolvimento , Glycine max/genética , Glycine max/metabolismo , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Simbiose/genética , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Produtos Agrícolas/microbiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Rhizobium , Nódulos Radiculares de Plantas/microbiologia , Glycine max/microbiologia
4.
J Plant Physiol ; 268: 153561, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34801776

RESUMO

Nodulation and symbiotic nitrogen fixation are important factors that determine legume growth. A pot experiment was carried out to determine the effects of Zn-Pb contamination on nodule apoplast (cell walls and intercellular spaces) of bird's foot trefoil (Lotus corniculatus L.) that spontaneously colonized old calamine wastes. The plants were grown in pots filled with sterile calamine substrate (M, metal treated) or expanded clay (NM, untreated) and inoculated with calamine-derived Lotus-nodulating Bradyrhizobium liaoningense. Apoplast reorganization in the nodules was examined using specific dyes for cellulose, pectin and lignin detection, and immuno-histochemical techniques based on monoclonal antibodies against xyloglucan (Lm25), pectins (Jim5 and Jim7), and structural proteins (arabinogalactan protein - Lm14 and extensin - Jim12). Microscopic analysis of metal-treated nodules revealed changes in the apoplast structure and composition of nodule cortex tissues and infected cells. Wall thickening was accompanied by intensified deposition of cellulose, xyloglucan, esterified pectin, arabinogalactan protein and extensin. The metal presence redirected also lignin and suberin deposition in the walls of the nodule cortex tissues. Our results showed reorganization of the apoplast of cortex tissues and infected cells of Lotus nodules under Zn-Pb presence. These changes in the apoplast structure and composition may have created actual barriers for the toxic ions. For this reason, they can be regarded as an element of legume defense strategy against metal stress that enables effective functioning of L. corniculatus-rhizobia symbiosis on Zn-Pb polluted calamine tailings.


Assuntos
Chumbo , Lotus , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Zinco , Lignina , Lotus/efeitos dos fármacos , Fixação de Nitrogênio , Pectinas , Nódulos Radiculares de Plantas/efeitos dos fármacos , Poluentes do Solo , Simbiose
5.
Plant Physiol ; 188(1): 560-575, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34599592

RESUMO

Most legumes can establish a symbiotic association with soil rhizobia that trigger the development of root nodules. These nodules host the rhizobia and allow them to fix nitrogen efficiently. The perception of bacterial lipo-chitooligosaccharides (LCOs) in the epidermis initiates a signaling cascade that allows rhizobial intracellular infection in the root and de-differentiation and activation of cell division that gives rise to the nodule. Thus, nodule organogenesis and rhizobial infection need to be coupled in space and time for successful nodulation. The plant hormone cytokinin (CK) contributes to the coordination of this process, acting as an essential positive regulator of nodule organogenesis. However, the temporal regulation of tissue-specific CK signaling and biosynthesis in response to LCOs or Sinorhizobium meliloti inoculation in Medicago truncatula remains poorly understood. In this study, using a fluorescence-based CK sensor (pTCSn::nls:tGFP), we performed a high-resolution tissue-specific temporal characterization of the sequential activation of CK response during root infection and nodule development in M. truncatula after inoculation with S. meliloti. Loss-of-function mutants of the CK-biosynthetic gene ISOPENTENYLTRANSFERASE 3 (IPT3) showed impairment of nodulation, suggesting that IPT3 is required for nodule development in M. truncatula. Simultaneous live imaging of pIPT3::nls:tdTOMATO and the CK sensor showed that IPT3 induction in the pericycle at the base of nodule primordium contributes to CK biosynthesis, which in turn promotes expression of positive regulators of nodule organogenesis in M. truncatula.


Assuntos
Alquil e Aril Transferases/metabolismo , Citocininas/genética , Citocininas/metabolismo , Medicago truncatula/genética , Medicago truncatula/fisiologia , Nodulação/genética , Nódulos Radiculares de Plantas/metabolismo , Simbiose/genética , Alquil e Aril Transferases/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Fixação de Nitrogênio/genética , Fixação de Nitrogênio/fisiologia , Organogênese/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Sinorhizobium meliloti/fisiologia , Simbiose/fisiologia
6.
PLoS One ; 16(12): e0259957, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34879082

RESUMO

Legumes (soybeans, peas, lentils, etc.) play important roles in agriculture on Earth because of their food value and their ability to form a mutualistic beneficial association with rhizobia bacteria. In this association, the host plant benefits from atmospheric nitrogen fixation by rhizobia. The presence of nitrogen in the Mars atmosphere offers the possibility to take advantage of this important plant-microbe association. While some studies have shown that Mars soil simulants can support plant growth, none have investigated if these soils can support the legume-rhizobia symbiosis. In this study, we investigated the establishment of the legume-rhizobia symbiosis on different Mars soil simulants (different grades of the Mojave Mars Simulant (MMS)-1: Coarse, Fine, Unsorted, Superfine, and the MMS-2 simulant). We used the model legume, Medicago truncatula, and its symbiotic partners, Sinorhizobium meliloti and Sinorhizobium medicae, in these experiments. Our results show that root nodules could develop on M. truncatula roots when grown on these Mars soil simulants and were comparable to those formed on plants that were grown on sand. We also detected nifH (a reporter gene for nitrogen fixation) expression inside these nodules. Our results indicate that the different Mars soil simulants used in this study can support legume-rhizobia symbiosis. While the average number of lateral roots and nodule numbers were comparable on plants grown on the different soil simulants, total plant mass was higher in plants grown on MMS-2 soil than on MMS-1 soil and its variants. Our results imply that the chemical composition of the simulants is more critical than their grain size for plant mass. Based on these results, we recommend that the MMS-2 Superfine soil simulant is a better fit than the MMS-1 soil and it's variants for future studies. Our findings can serve as an excellent resource for future studies investigating beneficial plant-microbe associations for sustainable agriculture on Mars.


Assuntos
Marte , Medicago truncatula/crescimento & desenvolvimento , Sinorhizobium meliloti/fisiologia , Sinorhizobium/fisiologia , Solo/classificação , Produção Agrícola , Medicago truncatula/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/microbiologia , Solo/química , Microbiologia do Solo , Simbiose
8.
Int J Mol Sci ; 22(15)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34360533

RESUMO

Carbonic anhydrase (CA) plays a vital role in photosynthetic tissues of higher plants, whereas its non-photosynthetic role in the symbiotic root nodule was rarely characterized. In this study, 13 CA genes were identified in the model legume Lotus japonicus by comparison with Arabidopsis CA genes. Using qPCR and promoter-reporter fusion methods, three previously identified nodule-enhanced CA genes (LjαCA2, LjαCA6, and LjßCA1) have been further characterized, which exhibit different spatiotemporal expression patterns during nodule development. LjαCA2 was expressed in the central infection zone of the mature nodule, including both infected and uninfected cells. LjαCA6 was restricted to the vascular bundle of the root and nodule. As for LjßCA1, it was expressed in most cell types of nodule primordia but only in peripheral cortical cells and uninfected cells of the mature nodule. Using CRISPR/Cas9 technology, the knockout of LjßCA1 or both LjαCA2 and its homolog, LjαCA1, did not result in abnormal symbiotic phenotype compared with the wild-type plants, suggesting that LjßCA1 or LjαCA1/2 are not essential for the nitrogen fixation under normal symbiotic conditions. Nevertheless, the nodule-enhanced expression patterns and the diverse distributions in different types of cells imply their potential functions during root nodule symbiosis, such as CO2 fixation, N assimilation, and pH regulation, which await further investigations.


Assuntos
Anidrases Carbônicas/metabolismo , Regulação da Expressão Gênica de Plantas , Lotus/enzimologia , Fixação de Nitrogênio , Proteínas de Plantas/metabolismo , Nódulos Radiculares de Plantas/enzimologia , Simbiose , Anidrases Carbônicas/genética , Lotus/genética , Lotus/crescimento & desenvolvimento , Fenótipo , Proteínas de Plantas/genética , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/crescimento & desenvolvimento
9.
Int J Mol Sci ; 22(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34445201

RESUMO

Auxin is essential for root development, and its regulatory action is exerted at different steps from perception of the hormone up to transcriptional regulation of target genes. In legume plants there is an overlap between the developmental programs governing lateral root and N2-fixing nodule organogenesis, the latter induced as the result of the symbiotic interaction with rhizobia. Here we report the characterization of a member of the L. japonicus TIR1/AFB auxin receptor family, LjAFB6. A preferential expression of the LjAFB6 gene in the aerial portion of L. japonicus plants was observed. Significant regulation of the expression was not observed during the symbiotic interaction with Mesorhizobium loti and the nodule organogenesis process. In roots, the LjAFB6 expression was induced in response to nitrate supply and was mainly localized in the meristematic regions of both primary and lateral roots. The phenotypic analyses conducted on two independent null mutants indicated a specialized role in the control of primary and lateral root elongation processes in response to auxin, whereas no involvement in the nodulation process was found. We also report the involvement of LjAFB6 in the hypocotyl elongation process and in the control of the expression profile of an auxin-responsive gene.


Assuntos
Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Lotus/genética , Proteínas de Plantas/genética , Raízes de Plantas/genética , Genes de Plantas , Lotus/crescimento & desenvolvimento , Lotus/metabolismo , Organogênese Vegetal , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/metabolismo
10.
Genes (Basel) ; 12(7)2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203444

RESUMO

Nitrogen fixation by rhizobia is a highly energy-demanding process. Therefore, nodule initiation in legumes is tightly regulated. Environmental nitrate is a potent inhibitor of nodulation. However, the precise mechanism by which this agent (co)regulates the inhibition of nodulation is not fully understood. Here, we demonstrate that in Medicago truncatula the lipo-chitooligosaccharide-induced accumulation of cytokinins is reduced in response to the application of exogenous nitrate. Under permissive nitrate conditions, perception of rhizobia-secreted signalling molecules leads to an increase in the level of four cytokinins (i.e., iP, iPR, tZ, and tZR). However, under high-nitrate conditions, this increase in cytokinins is reduced. The ethylene-insensitive mutant Mtein2/sickle, as well as wild-type plants grown in the presence of the ethylene biosynthesis inhibitor 2-aminoethoxyvinyl glycine (AVG), is resistant to the inhibition of nodulation by nitrate. This demonstrates that ethylene biosynthesis and perception are required to inhibit nodule organogenesis under high-nitrate conditions.


Assuntos
Citocininas/genética , Medicago truncatula/genética , Nodulação/genética , Rhizobium/genética , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/microbiologia , Nitratos/farmacologia , Reguladores de Crescimento de Plantas/genética , Rhizobium/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/microbiologia
11.
Plant Cell ; 33(9): 2981-3003, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34240197

RESUMO

To overcome nitrogen deficiency, legume roots establish symbiotic interactions with nitrogen-fixing rhizobia that are fostered in specialized organs (nodules). Similar to other organs, nodule formation is determined by a local maximum of the phytohormone auxin at the primordium site. However, how auxin regulates nodule development remains poorly understood. Here, we found that in soybean, (Glycine max), dynamic auxin transport driven by PIN-FORMED (PIN) transporter GmPIN1 is involved in nodule primordium formation. GmPIN1 was specifically expressed in nodule primordium cells and GmPIN1 was polarly localized in these cells. Two nodulation regulators, (iso)flavonoids trigger expanded distribution of GmPIN1b to root cortical cells, and cytokinin rearranges GmPIN1b polarity. Gmpin1abc triple mutants generated with CRISPR-Cas9 showed the impaired establishment of auxin maxima in nodule meristems and aberrant divisions in the nodule primordium cells. Moreover, overexpression of GmPIN1 suppressed nodule primordium initiation. GmPIN9d, an ortholog of Arabidopsis thaliana PIN2, acts together with GmPIN1 later in nodule development to acropetally transport auxin in vascular bundles, fine-tuning the auxin supply for nodule enlargement. Our findings reveal how PIN-dependent auxin transport modulates different aspects of soybean nodule development and suggest that the establishment of auxin gradient is a prerequisite for the proper interaction between legumes and rhizobia.


Assuntos
Glycine max/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Transporte Biológico , Proteínas de Plantas/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Glycine max/genética , Glycine max/metabolismo
12.
Plant Physiol ; 186(3): 1591-1605, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-33744928

RESUMO

Legume and rhizobium species can establish a nitrogen-fixing nodule symbiosis. Previous studies have shown that several transcription factors that play a role in (lateral) root development are also involved in nodule development. Chromatin remodeling factors, like transcription factors, are key players in regulating gene expression. However, studies have not investigated whether chromatin remodeling genes that are essential for root development are also involved in nodule development. Here, we studied the role of Medicago (Medicago truncatula) histone deacetylases (MtHDTs) in nodule development. Arabidopsis (Arabidopsis thaliana) orthologs of HDTs have been shown to play a role in root development. MtHDT expression is induced in nodule primordia and is maintained in the nodule meristem and infection zone. Conditional, nodule-specific knockdown of MtHDT expression by RNAi blocks nodule primordium development. A few nodules may still form, but their nodule meristems are smaller, and rhizobial colonization of the cells derived from the meristem is markedly reduced. Although the HDTs are expressed during nodule and root development, transcriptome analyses indicate that HDTs control the development of each organ in a different manner. During nodule development, the MtHDTs positively regulate 3-hydroxy-3-methylglutaryl coenzyme a reductase 1 (MtHMGR1). Decreased expression of MtHMGR1 is sufficient to explain the inhibition of primordium formation.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Histona Desacetilases/metabolismo , Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/genética , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Histona Desacetilases/genética , Medicago truncatula/metabolismo , Morfogênese/genética , Morfogênese/fisiologia , Desenvolvimento Vegetal/genética , Nódulos Radiculares de Plantas/metabolismo , Simbiose/genética , Simbiose/fisiologia
13.
mBio ; 12(2)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785618

RESUMO

When engaging in symbiosis with legume hosts, rhizobia are confronted with environmental changes, including nutrient availability and stress exposure. Genetic circuits allow responding to these environmental stimuli to optimize physiological adaptations during the switch from the free-living to the symbiotic life style. A pivotal regulatory system of the nitrogen-fixing soybean endosymbiont Bradyrhizobium diazoefficiens for efficient symbiosis is the general stress response (GSR), which relies on the alternative sigma factor σEcfG However, the GSR-controlled process required for symbiosis has not been identified. Here, we demonstrate that biosynthesis of trehalose is under GSR control, and mutants lacking the respective biosynthetic genes otsA and/or otsB phenocopy GSR-deficient mutants under symbiotic and selected free-living stress conditions. The role of trehalose as a cytoplasmic chemical chaperone and stress protectant can be functionally replaced in an otsA or otsB mutant by introducing heterologous genetic pathways for biosynthesis of the chemically unrelated compatible solutes glycine betaine and (hydroxy)ectoine. Alternatively, uptake of exogenously provided trehalose also restores efficient symbiosis and tolerance to hyperosmotic and hyperionic stress of otsA mutants. Hence, elevated cytoplasmic trehalose levels resulting from GSR-controlled biosynthesis are crucial for B. diazoefficiens cells to overcome adverse conditions during early stages of host infection and ensure synchronization with root nodule development.IMPORTANCE The Bradyrhizobium-soybean symbiosis is of great agricultural significance and serves as a model system for fundamental research in bacterium-plant interactions. While detailed molecular insight is available about mutual recognition and early nodule organogenesis, our understanding of the host-imposed conditions and the physiology of infecting rhizobia during the transition from a free-living state in the rhizosphere to endosymbiotic bacteroids is currently limited. In this study, we show that the requirement of the rhizobial general stress response (GSR) during host infection is attributable to GSR-controlled biosynthesis of trehalose. Specifically, trehalose is crucial for an efficient symbiosis by acting as a chemical chaperone to protect rhizobia from osmostress during host infection.


Assuntos
Bradyrhizobium/metabolismo , Glycine max/microbiologia , Trealose/metabolismo , Diamino Aminoácidos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Betaína/metabolismo , Bradyrhizobium/genética , Pressão Osmótica , Nodulação , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/microbiologia , Glycine max/crescimento & desenvolvimento
14.
Plant Cell Environ ; 44(5): 1627-1641, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33386621

RESUMO

Legumes control their nodule numbers through the autoregulation of nodulation (AON). Rhizobia infection stimulates the production of root-derived CLE peptide hormones that are translocated to the shoot where they regulate a new signal. We used soybean to demonstrate that this shoot-derived signal is miR2111, which is transported via phloem to the root where it targets transcripts of Too Much Love (TML), a negative regulator of nodulation. Shoot perception of rhizobia-induced CLE peptides suppresses miR2111 expression, resulting in TML accumulation in roots and subsequent inhibition of nodule organogenesis. Feeding synthetic mature miR2111 via the petiole increased nodule numbers per plant. Likewise, elevating miR2111 availability by over-expression promoted nodulation, while target mimicry of TML induced the opposite effect on nodule development in wild-type plants and alleviated the supernodulating and stunted root growth phenotypes of AON-defective mutants. Additionally, in non-nodulating wild-type plants, ectopic expression of miR2111 significantly enhanced lateral root emergence with a decrease in lateral root length and average root diameter. In contrast, hairy roots constitutively expressing the target mimic construct exhibited reduced lateral root density. Overall, these findings demonstrate that miR2111 is both the critical shoot-to-root factor that positively regulates root nodule development and also acts to shape root system architecture.


Assuntos
Glycine max/crescimento & desenvolvimento , Glycine max/genética , MicroRNAs/metabolismo , Família Multigênica , Brotos de Planta/genética , Rhizobium/fisiologia , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/genética , Sequência de Aminoácidos , Sequência de Bases , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Modelos Biológicos , Fenótipo , Floema/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica
15.
Sci Rep ; 11(1): 2034, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479414

RESUMO

Legume plants form a root-nodule symbiosis with rhizobia. This symbiosis establishment generally relies on rhizobium-produced Nod factors (NFs) and their perception by leguminous receptors (NFRs) that trigger nodulation. However, certain rhizobia hijack leguminous nodulation signalling via their type III secretion system, which functions in pathogenic bacteria to deliver effector proteins into host cells. Here, we report that rhizobia use pathogenic-like effectors to hijack legume nodulation signalling. The rhizobial effector Bel2-5 resembles the XopD effector of the plant pathogen Xanthomonas campestris and could induce nitrogen-fixing nodules on soybean nfr mutant. The soybean root transcriptome revealed that Bel2-5 induces expression of cytokinin-related genes, which are important for nodule organogenesis and represses ethylene- and defense-related genes that are deleterious to nodulation. Remarkably, Bel2-5 introduction into a strain unable to nodulate soybean mutant affected in NF perception conferred nodulation ability. Our findings show that rhizobia employ and have customized pathogenic effectors to promote leguminous nodulation signalling.


Assuntos
Bradyrhizobium/genética , Glycine max/genética , Rhizobium/genética , Nódulos Radiculares de Plantas/genética , Fabaceae/genética , Fabaceae/microbiologia , Regulação da Expressão Gênica de Plantas/genética , Nodulação/genética , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Rhizobium/patogenicidade , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Transdução de Sinais/genética , Glycine max/crescimento & desenvolvimento , Glycine max/microbiologia , Simbiose/genética , Xanthomonas/genética , Xanthomonas/patogenicidade
16.
Nat Commun ; 11(1): 5192, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33060582

RESUMO

Legumes utilize a shoot-mediated signaling system to maintain a mutualistic relationship with nitrogen-fixing bacteria in root nodules. In Lotus japonicus, shoot-to-root transfer of microRNA miR2111 that targets TOO MUCH LOVE, a nodulation suppressor in roots, has been proposed to explain the mechanism underlying nodulation control from shoots. However, the role of shoot-accumulating miR2111s for the systemic regulation of nodulation was not clearly shown. Here, we find L. japonicus has seven miR2111 loci, including those mapped through RNA-seq. MIR2111-5 expression in leaves is the highest among miR2111 loci and repressed after rhizobial infection depending on a shoot-acting HYPERNODULATION ABERRANT ROOT FORMATION1 (HAR1) receptor. MIR2111-5 knockout mutants show significantly decreased nodule numbers and miR2111 levels. Furthermore, grafting experiments using transformants demonstrate scions with altered miR2111 levels influence nodule numbers in rootstocks in a dose-dependent manner. Therefore, miR2111 accumulation in leaves through MIR2111-5 expression is required for HAR1-dependent systemic optimization of nodule number.


Assuntos
Lotus/metabolismo , MicroRNAs/metabolismo , Proteínas de Plantas/metabolismo , Nodulação/fisiologia , Brotos de Planta/metabolismo , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Lotus/genética , MicroRNAs/genética , Folhas de Planta , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Rhizobium/metabolismo , Análise de Sequência , Transdução de Sinais/fisiologia , Transcriptoma
17.
Int J Mol Sci ; 21(19)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003317

RESUMO

Gibberellins (GAs), a class of phytohormones, act as an essential natural regulator of plant growth and development. Many studies have shown that GA is related to rhizobial infection and nodule organogenesis in legume species. However, thus far, GA metabolism and signaling components are largely unknown in the model legume Medicago truncatula. In this study, a genome-wide analysis of GA metabolism and signaling genes was carried out. In total 29 components, including 8 MtGA20ox genes, 2 MtGA3ox genes, 13 MtGA2ox genes, 3 MtGID1 genes, and 3 MtDELLA genes were identified in M. truncatula genome. Expression profiles revealed that most members of MtGAox, MtGID1, and MtDELLA showed tissue-specific expression patterns. In addition, the GA biosynthesis and deactivation genes displayed a feedback regulation on GA treatment, respectively. Yeast two-hybrid assays showed that all the three MtGID1s interacted with MtDELLA1 and MtDELLA2, suggesting that the MtGID1s are functional GA receptors. More importantly, M. truncatula exhibited increased plant height and biomass by ectopic expression of the MtGA20ox1, suggesting that enhanced GA response has the potential for forage improvement.


Assuntos
Giberelinas/metabolismo , Medicago truncatula/genética , Desenvolvimento Vegetal/genética , Reguladores de Crescimento de Plantas/genética , Biomassa , Regulação da Expressão Gênica de Plantas , Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/metabolismo , Redes e Vias Metabólicas/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas , Rhizobium/genética , Rhizobium/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/crescimento & desenvolvimento
18.
Int J Mol Sci ; 21(15)2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32756503

RESUMO

The mitogen-activated protein kinase (MAPK) LjMPK6 is a phosphorylation target of SIP2, a MAPK kinase that interacts with SymRK (symbiosis receptor-like kinase) for regulation of legume-rhizobia symbiosis. Both LjMPK6 and SIP2 are required for nodulation in Lotus japonicus. However, the dephosphorylation of LjMPK6 and its regulatory components in nodule development remains unexplored. By yeast two-hybrid screening, we identified a type 2C protein phosphatase, LjPP2C, that specifically interacts with and dephosphorylates LjMPK6 in vitro. Physiological and biochemical assays further suggested that LjPP2C phosphatase is required for dephosphorylation of LjMPK6 in vivo and for fine-tuning nodule development after rhizobial inoculation. A non-phosphorylatable mutant variant LjMPK6 (T224A Y226F) could mimic LjPP2C functioning in MAPK dephosphorylation required for nodule development in hairy root transformed plants. Collectively, our study demonstrates that interaction with LjPP2C phosphatase is required for dephosphorylation of LjMPK6 to fine tune nodule development in L. japonicus.


Assuntos
Lotus/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Organogênese/genética , Proteína Fosfatase 2C/genética , Sequência de Aminoácidos/genética , Regulação da Expressão Gênica de Plantas/genética , Lotus/crescimento & desenvolvimento , Fosforilação/genética , Proteínas de Plantas/genética , Nodulação/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/crescimento & desenvolvimento
19.
Microbes Environ ; 35(3)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32611950

RESUMO

The rhizobial type III secretion system secretes effector proteins into host plant cells, which may either promote or inhibit symbiosis with legumes. We herein demonstrated that the type III secretion system of Bradyrhizobium sp. SUTN9-2 obstructed symbiosis with Lotus japonicus Miyakojima, L. japonicus Gifu, and Lotus burttii. A mutant of SUTN9-2 that is unable to secrete effector proteins showed better nodulation and plant growth promotion than wild-type SUTN9-2 when paired with these Lotus spp. We propose that SUTN9-2 is a useful strain for understanding the mechanisms by which effector proteins obstruct symbiosis between Bradyrhizobium and Lotus spp.


Assuntos
Bradyrhizobium/fisiologia , Lotus/microbiologia , Simbiose , Sistemas de Secreção Tipo III/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bradyrhizobium/genética , Bradyrhizobium/metabolismo , Lotus/classificação , Lotus/crescimento & desenvolvimento , Mutação , Nodulação , Nódulos Radiculares de Plantas/classificação , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Sistemas de Secreção Tipo III/genética
20.
Plant J ; 103(5): 1744-1766, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32491251

RESUMO

Soybean nodulation is a highly controlled process that involves complex gene regulation at both transcriptional and post-transcriptional levels. In the present study, we profiled gene expression changes, alternative splicing events, and DNA methylation patterns during nodule formation, development, and senescence. The transcriptome data uncovered key transcription patterns of nodule development that included 9669 core genes and 7302 stage-specific genes. Alternative splicing analysis uncovered a total of 2323 genes that undergo alternative splicing events in at least one nodule developmental stage, with activation of exon skipping and repression of intron retention being the most common splicing events in nodules compared to roots. Approximately 40% of the differentially spliced genes were also differentially expressed at the same nodule developmental stage, implying a substantial association between gene expression and alternative splicing. Genome-wide-DNA methylation analysis revealed dynamic changes in nodule methylomes that were specific to each nodule stage, occurred in a sequence-specific manner, and impacted the expression of 1864 genes. An attractive hypothesis raised by our data is that increased DNA methylation may contribute to the efficiency of alternative splicing. Together, our results provide intriguing insights into the associations between gene expression, alternative splicing, and DNA methylation that may shape transcriptome complexity and proteome specificity in developing soybean nodules.


Assuntos
Processamento Alternativo , Metilação de DNA , Regulação da Expressão Gênica de Plantas , Nodulação , Processamento Alternativo/genética , Processamento Alternativo/fisiologia , Metilação de DNA/genética , Metilação de DNA/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Genes de Plantas/genética , Genes de Plantas/fisiologia , Nodulação/genética , Nodulação/fisiologia , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/metabolismo , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA